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Introduction

The transducin β-like-1 X-linked-receptor-1 gene (TBL1XR1)
encodes for the TBL1XR1 proteinwhich plays a pivotal role in
gene transcription.1–6Avaried spectrumof variants has been
described inTBL1XR1, ranging frommicrodeletions to single-
nucleotide variations (SNVs; missense, frameshift, and non-

sense).5,6 Variants in TBL1XR1 cause a pleiotropic spectrum
of overlapping disorders, occurring in varying combinations
of the following features: global developmental delay (GDD),
nonsyndromic and syndromic intellectual disability (ID),
neuropsychiatric and behavioral issues, seizures, facial dys-
morphisms, tone abnormalities, and growth delays.6,7

Among these, a recurrent, de novo, missense variant in
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Abstract The transducin β-like-1 X-linked-receptor-1 gene (TBL1XR1) encodes for the TBL1XR1
protein which is involved in transcription. Single-nucleotide variants (SNVs) in the
TBL1XR1 gene have been reported to be associated with Pierpont’s syndrome (PS)
which exhibits numerous features including global developmental delay (GDD),
intellectual disability (ID), varying neurobehavioral and psychiatric manifestations
with/without autism spectrum disorder (ASD), abnormal fat distribution in the distal
extremities, short stature (SS), head circumference abnormalities, hearing loss (HL),
and facial dysmorphisms. Eight PS patients, having a de novo mutation resulting in p.
Tyr446Cys, showed no manifestations of ASD. The three other PS patients, having
mutations resulting in p.Tyr446His, p.Cys325Tyr and p.Gly237Asp, respectively, and
without the p.Tyr446Cys alteration, were in addition associated with neurobehavioral
abnormalities, including ASD, hyperactivity, and self-mutilation tendencies. Here, via
trio whole exome sequencing, we describe a 12th PS patient, the first from the Indian
subcontinent, reflecting a novel TBL1XR1 p.His348Arg alteration. The proband is a 4.5-
year-old male having GDD, speech delay, facial dysmorphisms, abnormal digital fat
pads, hypotonia, microcephaly, patent ductus arteriosus, and ASD features. Our report
strengthens the hypothesis that TBL1XR1 variants coding for the TBL1XR1 protein other
than p.Tyr446Cys might be more commonly associated with a neurobehavioral
phenotype and autistic tendencies.
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TBL1XR1 has been described as being associated with a
distinct syndrome called as Pierpont’s syndrome (PS).2

PS is an ultrarare genetic disorder with just 11 cases
reported in literature.1–6 It is typified by growth and
cognitive delays, hearing loss (HL), facial dysmorphisms,
and abnormal fat distribution in the distal limbs.1 Between
2016 and2017, eight unrelated individuals with PS were
reported; all associated with a recurrent, de novo, missense,
SNV; p.Tyr446Cys in TBL1XR1.2–4 Later, three additional
cases of PS, each associated with a variant other than p.
Tyr446Cys were reported.5,6 Analyzing the genotype and
phenotype of 10 cases of PS (8 with p.Tyr446Cys and one
each p.Tyr446His and p.Cys325Tyr), Quan et al postulated
that the non-p.Tyr446Cys variant in TBL1XR1 is more com-
monly associated with neurobehavioral and autistic spec-
trum.7 This thought was backed by another recent report
(2021), describing the association of ASD features in PS and
non-p.Tyr446Cys missense variant in TBL1XR1, viz, p.
Gly237Asp.6

We report a novel case of PS with features of ASD in
addition to the typical spectrum without HL, deep palmar,
and plantar grooves. The child was diagnosed by trio whole-
exome sequencing (WES) as harboring a de novo, nonrecur-
rent TBL1XR1 missense variant. This report expands the
genotypic and the phenotypic spectrum of PS.

Clinical Details

A nonconsanguineous couple of South Asian descent pre-
sented to our clinic with developmental concerns about their
male infant. The proband was delivered electively at full
term, following an uneventful antenatal period by caesarean
section in view of breech presentationwith a birth weight of
2.8 kg. The APGAR score were normal. He underwent device
closure for patent ductus arteriosus (PDA) at 7 months of age
in view of recurrent chest infections and failure to gain
weight.

Motor-predominant developmental delay was noted by
6 months age of age. On assessment, he had no head control
and inability to roll over. Hewas able to fix and follow, aswell
as had developed eye contact. His growth parameters plotted
on theWorld Health Organization chart were: weight: 4.5 kg
(<�3Z score), length: 64 cm (between 0 and �2Z score), and
head circumference: 39 cm (�3Z score) at 4.5months. Hehad
dysmorphic facial features; microcephaly, brachycephaly,
fleshy, low-set and posteriorly rotated ears, bulbous nose
with short columella, esotropia, elongated philtrum, thin
vermilion of the upper lip, microretrognathia, and small
widely spaced teeth. He also had striking fetal fat pads on
the hands and the feet. He was hypotonic with preserved
deep-tendon reflexes.

He started undergoing neurodevelopmental therapy,
specifically physiotherapy. By 15 months of age, his social
interaction improved in the form of good eye contact,
social smile, and responsive laughing. By 2.5 years of
age, he was able to pull to stand, as well as stand with
support. However, his social interaction seemed to re-
gress; his eye contact was poor and he would not follow

gaze. He had not developed any nonverbal communication
skills.

By 4 years of age, motor improvement continued; he
started walking independently with a broad-based gait.
However, he seemed to have developed autistic features.
Eye contact continued to be poor. He had repetitive behav-
iors. He had virtually no communication skills, neither
verbal nor nonverbal. The Childhood Autism Rating Scale-
II (CARS II) was conducted. It is a 15-item behavioral rating
scale developed to identify children with autism and to
categorize these behaviors on the basis of severity from
mild to severe. CARS II is robust diagnostic tool for ASD in
children more than 2 years of age, recommended by the
Centre for Disease Control and Prevention (CDC).8 CARS II
has been proven to be a helpful tool in this regard irre-
spective of the underlying developmental delay in the
child.9 Results in our case, indicated presence of severe
symptoms of ASD (raw score: 35.5 and percentile: 38). The
family was sensitized to this slow, but worrying autistic
regression and occupational therapy was introduced. In
about 6 months, he showed significant improvement. He
regained consistent eye contact and a social smile. He
developed stranger anxiety. He developed gestures and
started indicating for the toilet.

Ophthalmic evaluation at 3 years indicated compound
hyperopic astigmatism. The following investigations tested
normal: complete blood count, thyroid function tests, mag-
netic resonance imaging of the brain, electroencephalogram,
visual evoked potentials, electroretinogram, brainstem
evoked audiometry response, fluorescence in situ hybridiza-
tion to rule out William’s syndrome, chromosomal micro-
array, and karyotype.

We suspected an underlying genetic causation for the
child’s syndromic GDD with ASD. When the child was
nearly 4.5 years old, we ordered trio (i.e., proband and
both parents) WES with copy-number-variant (CNV) cover-
age. The WES test includes sequencing of the human core
exome on the Illumina next-generation sequencing (NGS)
platform. Sequencing is done at mean depth of 80–100X
and more than 90% of the bases in the exome are covered at
20X depth. The test identified a missense variant
(NM_001321193.1:c.1043A>G; p.His348Arg) in heterozy-
gous state in TBL1XR1 gene. This variant was classified as
likely-pathogenic by the American College of Medical Ge-
netics (ACMG) guidelines which satisfies the definition of
PS2 (de novo with confirmed biological parenthood), PM2
(rare), PP2 (constraint Z¼4.2), and PP3 (predicted damag-
ing by multiple algorithms)10 (Supplementary Material S1;
available in the online version). Further segregation of this
variant in the parents confirmed its de novo status as
parents were found to be negative for this variant.
Subsequent analysis revealed that the variant was not
reported in the 1000 Genomes database (https://www.
internationalgenome.org) neither in gnomAD nor in the
general South Asian population. This confirmed the diag-
nosis of PS (OMIM no.: 602342) in the proband, known to
follow an autosomal dominant inheritance pattern. The
distinctive syndromic profile in our patient matched the
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syndrome diagnosed (►Fig. 1). The pictures are shared
herewith after due consent from his parents.

The precise molecular diagnosis did not alter the existing
line of management. It, however, provided the family a
closure regarding the etiology. They were reassured that the
risk of recurrence of PS in the proband’s siblings is <1%,11

assuming a remote possibility of germline mosaicism for
the TBL1XR1 variant. The available reproductive options
were explained to the parents, with regard to future
pregnancies.

Discussion

PS, an ultrarare genetic disorder, is typically associated with
growth and cognitive delays, HL, facial dysmorphisms, and
abnormal fat distribution in the distal limbs.1,2 It was first
clinically described in 1998 in two unrelated boys by Pier-
pont et al,1 although its genetic elucidation became clear
only in 2016.2

On reverse phenotyping (reevaluation of the patient after
the genetic report), we appreciated our patient to have
features of PS1–6 including distinct crescent moon-shaped
eyes when the child smiled. Our patient however did not
have HL and the classic deep palmar and plantar grooves
described in other case reports of PS (►Table 1). It is

appreciated in the review of the cases reported so far
(►Table 1) that PS is associated with phenotypic variability;
the core features described by Pierpont et al are not neces-
sarily present in all the cases, and vice versa (i.e., expansion of
phenotype as more cases get elucidated).

The missense variant (NM_001321193.1:c.1043A>G and
chr3:176756105T>C) detected in this case is located at the
C-terminus tryptophan-aspartic acid (W-D) domain of the
TBL1XR1 protein. This domain comprises a total of eight
WD40 repeats and the detected variant is found within the
fifth WD40 repeat region. With respect to PS, this is the first
reported variant in this domain (►Fig. 2A and B). The
Combined Annotation Dependent Depletion (CADD) score
of the detected variant is 26.3 and the Missense Variants Z-
Score for the TBL1XR1 gene is 4.2. The higher/positive Z-
scores indicate the transcript is more intolerant to variation
(increased constraint) and therefore the gene had fewer
missense variants than expected. In silico computational
analysis to assess the variant penetrance effect by bioinfor-
matic tools, such as BayesDel_addAF, DANN, EIGEN,
FATHMM-MKL, LIST-S2, M-CAP, MVP, Mutation Assessor,
MutationTaster, PrimateAI, and SIFT, predicted a damaging
effect of the reported c.1043A>G variant in TBL1XR1. Pro-
tein–protein interaction analysis revealed primary associa-
tion of TBL1XR1 with multiple proteins, such as NCOR1,

Fig. 1 Clinical photographs of the child. Note the following features: brachycephaly, fleshy, low-set and posteriorly rotated ears, bulbous nose
with short columella, esotropia, elongated philtrum, thin vermilion of the upper lip, microretrognathia, and fetal fat pads on the hands and the
feet.
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HDAC1/2/3, GPS2 (nuclear receptor corepressors complex,
deacetylation process), CTNNB1 (cell adhesion and signaling
protein), and CDC5L (cell cycle regulator; ►Fig. 2C; String.
org).

We performed protein modeling to check the impact of
mutant TBL1XR1 variant. Although the overall protein
confirmation remained intact, interestingly, it was noted
that the backbone of the mutant protein (►Fig. 2D) was
minimally influenced by the missense variant in concern,
wherein a hydrogen bond was lost with an increased
single turn in comparison to wild type protein
(►Fig. 2E). We postulate that the detected variant in our
case resulted in arginine replacing the original histidine

within the protein backbone. Arginine methylation is a
posttranslational modification which can potentially re-
sult in altered protein–protein interaction, impacting nor-
mal protein function.12–16 Another possibility is that the
variant in concern, being close to the intron–exon bound-
ary, may possibly create aberrant splicing due to the
creation of a GT donor splice site.10–14 It is also food for
thought whether similar altered protein–protein interac-
tions involving arginine, in other genes alike, could be an
important pathomechanism clue for other cases of syn-
dromic and nonsyndromic autism.

Thus, the current study expands the genotypic and the
phenotypic landscape of Pierpont’s syndrome, while

Table 1 Comparison of genotype and the phenotype of Pierpont syndrome cases reported to date2–6

Serial
number

Age (y),
sex

Phenotype Genotype
(TBL1XR1)

Reference

1 28, M DD, FD, HL, SS, hypotonia, abnormal distal fat distributiona p.Tyr446Cys 2

2 20, M DD, FD, HL, SS, hypotonia, abnormal distal fat distributiona

3 12, M DD, FD, HL, SS, hypotonia, abnormal distal fat distributiona

4 5.7, M DD, FD, HL, SS, hypotonia, abnormal distal fat distributiona

5 10, F DD, FD, HL, SS, hypotonia, abnormal distal fat distributiona

6 19, F DD, FD, hypotonia, SS, abnormal distal fat distributiona

No HL

7 3.4, M DD, FD, hypotonia, abnormal distal fat distributiona 3

No HL
Additionally present- cryptorchidism, microphthalmia,
nystagmus

8 7, M DD, FD, hypotonia, abnormal distal fat distributiona 4

No HL
Additionally present- submucous CP, hydronephrosis

9 14, M DD, FD, hypotonia, SS, abnormal distal fat distributiona p.Tyr446His 5

No HL
Additionally present- autistic features, hyperphagia, sleep
disturbances, aortic valve dysplasia, mitral valve prolapse

10 21, F DD, FD, hypotonia, deep plantar and palmar grooves (no fetal
or subcalcaneal fat pads)

p.Cys325Tyr

No HL
Additionally present hyperactivity, hyperphagia, self-
mutilation, sleep disturbances, unmotivated laughing and
crying episodes

11 4, M DD, FD, hypotonia, SS, fetal fat pads on fingers and toes p.Gly237Asp 6

No deep plantar and palmar grooves
Additionally present genitourinary abnormalities: (glandular
hypospadias, crossed left renal ectopia, reduced renal
function, both kidneys showed vesicoureteral reflux) and ASD

12 4.5, M DD, FD, hypotonia, SS, fetal fat pads on fingers and toes p.His348Arg Current case

No HL, deep palmar/plantar grooves
Additionally present ASD, PDA, compound hyperopic
astigmatism

Abbreviations: ASD, autism spectrum disorder; CP, cleft palate; DD, developmental delay; F: female; FD, facial dysmorphisms; HL, hearing loss; M,
male; PDA, patent ductus arteriosus; SS, short stature.
aDeep palmar and plantar grooves/pillowing, marked fetal finger and toe pads, and subcalcaneal fat pads.
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highlighting the variability associated with it too. It also
proposes likely pathomechanisms explaining the deleteri-
ous effect of the detected missense variant.
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